Noise-resistant joint diagonalization independent component analysis based process fault detection
نویسندگان
چکیده
Fast independent component analysis (FastICA) is an efficient feature extraction tool widely used for process fault detection. However, the conventional FastICA-based fault detection method does not consider the ubiquitous measurement noise and may exhibit unsatisfactory performance under the adverse effects of the measurement noise. To solve this problem, we propose a new process fault detection method based on noise-resistant joint diagonalization independent component analysis (NRJDICA), which explicitly takes the measurement noise into consideration. Specifically, the NRJDICA algorithm is developed to estimate the mixing matrix and the independent components (ICs) by whitening the measured variables and performing the joint diagonalization of the whitened variables’ time-delayed covariance matrices. The relationships between the kurtosis statistics of the ICs and the fourth-order cross cumulant statistics of the measured variables are then derived based on the estimated mixing matrix to help sorting the estimated ICs and selecting the dominant ICs. The serial correlation information of each dominant IC is next estimated by using a moving window technique, based on which a monitoring statistic is constructed to conduct fault detection. The simulation studies using a threevariable system and a continuous stirred tank reactor show that the proposed method has superior fault detection performance over the traditional FastICA-based fault detection. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
A process monitoring method based on noisy independent component analysis
Independent component analysis (ICA) is an effective feature extraction tool for process monitoring. However, the conventional ICA-based process monitoring methods usually adopt noise-free ICA models and thus may perform unsatisfactorily under the adverse effects of the measurement noise. In this paper, a process monitoring method using a new noisy independent component analysis, referred to as...
متن کاملSensitivity Analysis for the Problem of Matrix Joint Diagonalization
We investigate the sensitivity of the problem of Non-Orthogonal (matrix) Joint Diagonalization (NOJD). First, we consider the uniqueness conditions for the problem of Exact Joint Diagonalization (EJD), which is closely related to the issue of uniqueness in tensor decompositions. As a by-product, we derive the well-known identifiability conditions for Independent Component Analysis (ICA), based ...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملAcoustic correlated sources direction finding in the presence of unknown spatial correlation noise
In this paper, a new method is proposed for DOA estimation of correlated acoustic signals, in the presence of unknown spatial correlation noise. By generating a matrix from the signal subspace with the Hankel-SVD method, the correlated resource information is extracted from each eigen-vector. Then a joint-diagonalization structure is constructed of the signal subspace and basis it, independent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 149 شماره
صفحات -
تاریخ انتشار 2015